Skip to content
Snippets Groups Projects
Commit 3b2b280a authored by Lorenz Meier's avatar Lorenz Meier
Browse files

Get ROS examples to compile, add simple RC channels message

parent ac0f01e9
No related branches found
No related tags found
No related merge requests found
......@@ -8,6 +8,7 @@ find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
message_generation
)
## System dependencies are found with CMake's conventions
......@@ -44,11 +45,10 @@ find_package(catkin REQUIRED COMPONENTS
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
add_message_files(
FILES
rc_channels.msg
)
## Generate services in the 'srv' folder
# add_service_files(
......@@ -99,18 +99,30 @@ include_directories(
## Declare a cpp library
# add_library(px4
# src/${PROJECT_NAME}/px4test.cpp # src/platform/ros/ros.cpp
# src/${PROJECT_NAME}/px4test.cpp # src/platforms/ros/ros.cpp
# )
## Declare a cpp executable
add_executable(rostest_node src/platform/ros/ros.cpp)
## Declare a test publisher
add_executable(publisher src/examples/publisher/publisher.cpp)
## Add cmake target dependencies of the executable/library
## as an example, message headers may need to be generated before nodes
add_dependencies(publisher px4_generate_messages_cpp)
## Specify libraries to link a library or executable target against
target_link_libraries(publisher
${catkin_LIBRARIES}
)
## Declare a test subscriber
add_executable(subscriber src/examples/subscriber/subscriber.cpp)
## Add cmake target dependencies of the executable/library
## as an example, message headers may need to be generated before nodes
add_dependencies(rostest_node px4_generate_messages_cpp)
add_dependencies(subscriber px4_generate_messages_cpp)
## Specify libraries to link a library or executable target against
target_link_libraries(rostest_node
target_link_libraries(subscriber
${catkin_LIBRARIES}
)
......
Header header
int32 RC_CHANNELS_FUNCTION_MAX=18
uint64 timestamp_last_valid # Timestamp of last valid RC signal
float32 channels[RC_CHANNELS_FUNCTION_MAX] # Scaled to -1..1 (throttle: 0..1)
float32[18] channels # Scaled to -1..1 (throttle: 0..1)
uint8 channel_count # Number of valid channels
int8 function[RC_CHANNELS_FUNCTION_MAX] # Functions mapping
int8[18] function # Functions mapping
uint8 rssi # Receive signal strength index
bool signal_lost # Control signal lost, should be checked together with topic timeout
\ No newline at end of file
bool signal_lost # Control signal lost, should be checked together with topic timeout
/*
* Copyright (C) 2008, Morgan Quigley and Willow Garage, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of Stanford University or Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
// %Tag(FULLTEXT)%
// %Tag(ROS_HEADER)%
#include "ros/ros.h"
// %EndTag(ROS_HEADER)%
// %Tag(MSG_HEADER)%
#include "std_msgs/String.h"
// %EndTag(MSG_HEADER)%
#include <sstream>
/**
* This tutorial demonstrates simple sending of messages over the ROS system.
*/
int main(int argc, char **argv)
{
/**
* The ros::init() function needs to see argc and argv so that it can perform
* any ROS arguments and name remapping that were provided at the command line. For programmatic
* remappings you can use a different version of init() which takes remappings
* directly, but for most command-line programs, passing argc and argv is the easiest
* way to do it. The third argument to init() is the name of the node.
*
* You must call one of the versions of ros::init() before using any other
* part of the ROS system.
*/
// %Tag(INIT)%
ros::init(argc, argv, "talker");
// %EndTag(INIT)%
/**
* NodeHandle is the main access point to communications with the ROS system.
* The first NodeHandle constructed will fully initialize this node, and the last
* NodeHandle destructed will close down the node.
*/
// %Tag(NODEHANDLE)%
ros::NodeHandle n;
// %EndTag(NODEHANDLE)%
/**
* The advertise() function is how you tell ROS that you want to
* publish on a given topic name. This invokes a call to the ROS
* master node, which keeps a registry of who is publishing and who
* is subscribing. After this advertise() call is made, the master
* node will notify anyone who is trying to subscribe to this topic name,
* and they will in turn negotiate a peer-to-peer connection with this
* node. advertise() returns a Publisher object which allows you to
* publish messages on that topic through a call to publish(). Once
* all copies of the returned Publisher object are destroyed, the topic
* will be automatically unadvertised.
*
* The second parameter to advertise() is the size of the message queue
* used for publishing messages. If messages are published more quickly
* than we can send them, the number here specifies how many messages to
* buffer up before throwing some away.
*/
// %Tag(PUBLISHER)%
ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
// %EndTag(PUBLISHER)%
// %Tag(LOOP_RATE)%
ros::Rate loop_rate(10);
// %EndTag(LOOP_RATE)%
/**
* A count of how many messages we have sent. This is used to create
* a unique string for each message.
*/
// %Tag(ROS_OK)%
int count = 0;
while (ros::ok())
{
// %EndTag(ROS_OK)%
/**
* This is a message object. You stuff it with data, and then publish it.
*/
// %Tag(FILL_MESSAGE)%
std_msgs::String msg;
std::stringstream ss;
ss << "hello world " << count;
msg.data = ss.str();
// %EndTag(FILL_MESSAGE)%
// %Tag(ROSCONSOLE)%
ROS_INFO("%s", msg.data.c_str());
// %EndTag(ROSCONSOLE)%
/**
* The publish() function is how you send messages. The parameter
* is the message object. The type of this object must agree with the type
* given as a template parameter to the advertise<>() call, as was done
* in the constructor above.
*/
// %Tag(PUBLISH)%
chatter_pub.publish(msg);
// %EndTag(PUBLISH)%
// %Tag(SPINONCE)%
ros::spinOnce();
// %EndTag(SPINONCE)%
// %Tag(RATE_SLEEP)%
loop_rate.sleep();
// %EndTag(RATE_SLEEP)%
++count;
}
return 0;
}
// %EndTag(FULLTEXT)%
\ No newline at end of file
/*
* Copyright (C) 2008, Morgan Quigley and Willow Garage, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of Stanford University or Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
// %Tag(FULLTEXT)%
#include "ros/ros.h"
#include "std_msgs/String.h"
/**
* This tutorial demonstrates simple receipt of messages over the ROS system.
*/
// %Tag(CALLBACK)%
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
ROS_INFO("I heard: [%s]", msg->data.c_str());
}
// %EndTag(CALLBACK)%
int main(int argc, char **argv)
{
/**
* The ros::init() function needs to see argc and argv so that it can perform
* any ROS arguments and name remapping that were provided at the command line. For programmatic
* remappings you can use a different version of init() which takes remappings
* directly, but for most command-line programs, passing argc and argv is the easiest
* way to do it. The third argument to init() is the name of the node.
*
* You must call one of the versions of ros::init() before using any other
* part of the ROS system.
*/
ros::init(argc, argv, "listener");
/**
* NodeHandle is the main access point to communications with the ROS system.
* The first NodeHandle constructed will fully initialize this node, and the last
* NodeHandle destructed will close down the node.
*/
ros::NodeHandle n;
/**
* The subscribe() call is how you tell ROS that you want to receive messages
* on a given topic. This invokes a call to the ROS
* master node, which keeps a registry of who is publishing and who
* is subscribing. Messages are passed to a callback function, here
* called chatterCallback. subscribe() returns a Subscriber object that you
* must hold on to until you want to unsubscribe. When all copies of the Subscriber
* object go out of scope, this callback will automatically be unsubscribed from
* this topic.
*
* The second parameter to the subscribe() function is the size of the message
* queue. If messages are arriving faster than they are being processed, this
* is the number of messages that will be buffered up before beginning to throw
* away the oldest ones.
*/
// %Tag(SUBSCRIBER)%
ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
// %EndTag(SUBSCRIBER)%
/**
* ros::spin() will enter a loop, pumping callbacks. With this version, all
* callbacks will be called from within this thread (the main one). ros::spin()
* will exit when Ctrl-C is pressed, or the node is shutdown by the master.
*/
// %Tag(SPIN)%
ros::spin();
// %EndTag(SPIN)%
return 0;
}
// %EndTag(FULLTEXT)%
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment