Newer
Older
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>
int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
int readShotData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, int mode, float weight, int verbose);
int readTinvData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int ntfft, int mode, float *maxval, float *tinv, int hw, int verbose);
int writeDataIter(char *file_iter, float *data, segy *hdrs, int n1, int n2, float d2, float f2, int n2out, int Nsyn, float *xsyn, float *zsyn, int iter);
void name_ext(char *filename, char *extension);
void applyMute( float *data, float *mute, int smooth, int above, int Nsyn, int nxs, int nts, float *xsrc, int *xrcvsyn, int nx, int shift);
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);
void synthesis(complex *Refl, complex *Fop, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int reci, int nshots, int verbose);
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" MARCHENKO - Iterative Green's functions retrieval in frequency domain",
" ",
" marchenko file_tinv= file_shot= nshots= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_tinv= ............... focusing operator(s)",
" file_shot= ............... shot records with Reflection data",
" ",
" Optional parameters: ",
" ",
" tap=0 .................... lateral taper focusing(1), shot(2) or both(3)",
" ntap=0 ................... number of taper points at boundaries",
" fmax=70 .................. maximum frequency",
" MARCHENKO ITERATIONS ",
" niter=10 ................. number of iterations",
" MUTE WINDOW ",
" above=0 .................. mute above(1), around(0) or below(-1) the first travel times of file_tinv",
" shift=12 ................. number of points above(positive) / below(negative) travel time for mute",
" hw=8 ..................... window in time samples to look for maximum in next trace",
" smooth=5 ................. number of points to smooth mute with cosine window",
" weight=1 ................. weight factor for summation of muted field with Tinv",
" OUTPUT DEFINITION ",
" file_green= .............. output file with full Green function(s)",
" file_gplus= .............. output file with G+ ",
" file_gmin= ............... output file with G- ",
" file_f1plus= ............. output file with f1+ ",
" file_f1min= .............. output file with f1- ",
" file_pplus= .............. output file with p+ ",
" file_f2= ................. output file with f2 (=p+) ",
" file_pmin= ............... output file with p- ",
" file_iter= ............... output file with N for each iteration",
" verbose=0 ................ silent option; >0 displays info",
" ",
" ",
" author : Jan Thorbecke : 2016 (j.w.thorbecke@tudelft.nl)",
" ",
NULL};
/**************** end self doc ***********************************/
int main (int argc, char **argv)
{
FILE *fp_syn, *fp_shot, *fp_out, *fp_f1plus, *fp_f1min;
FILE *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin;
int i, j, k, l, ret, nshots, Nsyn, nt, nx, nts, nxs, more, ngath;
int nf, nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn;
int reci, mode, ixa, ixb, n2out, verbose, ntfft;
int iter, niter, iw, tracf;
int hw, smooth, above, shift, *ixpossyn, npossyn, ix;
float fmin, fmax, df, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn;
double t0, t1, t2, t3, tsyn, tread, tfft;
float *shotdata, d1, d2, f1, f2, fts, fxs, ft, fx, *xsyn, dxsrc;
float *green, *pplus, *f2p, *pmin, *tinv, *mute, dt, dx, dts, dxs, scl, mem;
float *f1plus, *f1min, *iRN, *Ni, *trace, *Gmin, *Gplus;
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
float max, scel, xmin, xmax, weight;
complex *Refl, *Fop, *ctrace;
char *file_tinv, *file_shot, *file_green, *file_iter;
char *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin;
char number[16], filename[1024];
segy *hdrs, *hdrs_in, *hdrs_out;
initargs(argc, argv);
requestdoc(1);
tsyn = tread = tfft = 0.0;
t0 = wallclock_time();
if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL;
if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL;
if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL;
if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL;
if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL;
if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL;
if (!getparstring("file_f2", &file_f2)) file_f2 = NULL;
if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL;
if (!getparstring("file_iter", &file_iter)) file_iter = NULL;
if (!getparint("verbose", &verbose)) verbose = 0;
if (file_tinv == NULL && file_shot == NULL)
verr("file_tinv and file_shot cannot be both input pipe");
if (!getparstring("file_green", &file_green)) {
if (verbose) vwarn("parameter file_green not found, assume pipe");
file_green = NULL;
}
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparfloat("fmax", &fmax)) fmax = 70.0;
if (!getparint("ixa", &ixa)) ixa = 0;
if (!getparint("ixb", &ixb)) ixb = ixa;
if (!getparint("reci", &reci)) reci = 0;
if (!getparfloat("weight", &weight)) weight = 1.0;
if (!getparint("tap", &tap)) tap = 0;
if (!getparint("ntap", &ntap)) ntap = 0;
if(!getparint("niter", &niter)) niter = 10;
if(!getparint("hw", &hw)) hw = 15;
if(!getparint("smooth", &smooth)) smooth = 5;
if(!getparint("above", &above)) above = 0;
if(!getparint("shift", &shift)) shift=12;
if (reci && ntap) vwarn("tapering influences the reciprocal result");
/*================ Reading info about shot and initial operator sizes ================*/
ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */
ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
Nsyn = ngath;
nxs = n2;
nts = n1;
dxs = d2; dts = d1;
fxs = f2; fts = f1;
ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */
ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
nshots = ngath;
if (!getparfloat("dt", &dt)) dt = d1;
ntfft = optncr(MAX(nt, nts));
nf = ntfft/2+1;
df = 1.0/(ntfft*dt);
nfreq = ntfft/2+1;
nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1);
nw_low = MAX(nw_low, 1);
nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1);
nw = nw_high - nw_low + 1;
scl = 1.0/((float)ntfft);
/*================ Allocating all data arrays ================*/
Fop = (complex *)malloc(nxs*nw*Nsyn*sizeof(complex));
xrcvsyn = (float *)calloc(Nsyn*nxs,sizeof(float));
xsyn = (float *)malloc(Nsyn*sizeof(float));
zsyn = (float *)malloc(Nsyn*sizeof(float));
tapersy = (float *)malloc(nxs*sizeof(float));
xnxsyn = (int *)calloc(Nsyn,sizeof(int));
green = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f2p = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
pmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Gmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Gplus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1plus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1min = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
iRN = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Ni = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
ctrace = (complex *)malloc(ntfft*sizeof(complex));
trace = (float *)malloc(ntfft*sizeof(float));
mute = (float *)calloc(Nsyn*nxs,sizeof(float));
tinv = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
ixpossyn = (int *)malloc(nxs*sizeof(int));
Refl = (complex *)malloc(nw*nx*nshots*sizeof(complex));
tapersh = (float *)malloc(nx*sizeof(float));
xsrc = (float *)calloc(nshots,sizeof(float));
zsrc = (float *)calloc(nshots,sizeof(float));
xrcv = (float *)calloc(nshots*nx,sizeof(float));
xnx = (int *)calloc(nshots,sizeof(int));
/*================ Read and define mute window based on focusing operator(s) ================*/
/* Fop = p_0^+ = G_d (-t) ~ Tinv */
mode=-1; /* apply complex conjugate to read in data */
readTinvData(file_tinv, xrcvsyn, xsyn, zsyn, xnxsyn, Fop, nw, nw_low, Nsyn, nxs, ntfft,
/* reading data added zero's to the number of time samples to be the same as ntfft */
/* define tapers to taper edges of acquisition */
if (tap == 1 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nxs-ntap; j++)
tapersy[j] = 1.0;
for (j = nxs-ntap; j < nxs; j++)
tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nxs; j++) tapersy[j] = 1.0;
}
if (tap == 1 || tap == 3) {
if (verbose) vmess("Taper for operator applied ntap=%d", ntap);
for (l = 0; l < Nsyn; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nxs; i++) {
Fop[l*nxs*nw+j*nxs+i].r *= tapersy[i];
Fop[l*nxs*nw+j*nxs+i].i *= tapersy[i];
}
}
}
}
/* check consistency of header values */
if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0];
fxs2 = fxs + (float)(nxs-1)*dxs;
dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1);
if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
if (dxf != 0) dxs = fabs(dxf);
vmess("dx in operator => %f", dxs);
}
/*================ Reading shot records ================*/
mode=1;
readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft,
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
tapersh = (float *)malloc(nx*sizeof(float));
if (tap == 2 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nx-ntap; j++)
tapersh[j] = 1.0;
for (j = nx-ntap; j < nx; j++)
tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nx; j++) tapersh[j] = 1.0;
}
if (tap == 2 || tap == 3) {
if (verbose) vmess("Taper for shots applied ntap=%d", ntap);
for (l = 0; l < nshots; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nx; i++) {
Refl[l*nx*nw+j*nx+i].r *= tapersh[i];
Refl[l*nx*nw+j*nx+i].i *= tapersh[i];
}
}
}
}
free(tapersh);
/* check consistency of header values */
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
fxf = xsrc[0];
if (nx > 1) dxf = (xrcv[0] - xrcv[nx-1])/(float)(nx-1);
else dxf = d2;
if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
if (dxf != 0) dx = fabs(dxf);
else verr("gx hdrs not set");
vmess("dx used => %f", dx);
}
dxsrc = (float)xsrc[1] - xsrc[0];
if (dxsrc == 0) {
vwarn("sx hdrs are not filled in!!");
dxsrc = dx;
}
/*================ Check the size of the files ================*/
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
}
di = NINT(dxf/dxs);
if ((NINT(di*dxs) != NINT(dxf)) && verbose)
vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
if (nt != nts)
vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts);
if (verbose) {
vmess("Number of focusing operators = %d", Nsyn);
vmess("Number of receivers in focusop = %d", nxs);
vmess("number of shots = %d", nshots);
vmess("number of receiver/shot = %d", nx);
vmess("first model position = %.2f", fxs);
vmess("last model position = %.2f", fxs2);
vmess("first source position fxf = %.2f", fxf);
vmess("source distance dxsrc = %.2f", dxsrc);
vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc);
vmess("receiver distance dxf = %.2f", dxf);
vmess("direction of increasing traces = %d", di);
vmess("number of time samples (nt,nts) = %d (%d,%d)", ntfft, nt, nts);
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
vmess("time sampling = %e ", dt);
if (file_green != NULL) vmess("Green output file = %s ", file_green);
if (file_gmin != NULL) vmess("Gmin output file = %s ", file_gmin);
if (file_gplus != NULL) vmess("Gplus output file = %s ", file_gplus);
if (file_pmin != NULL) vmess("Pmin output file = %s ", file_pmin);
if (file_f2 != NULL) vmess("f2 (=pplus) output file = %s ", file_f2);
if (file_f1min != NULL) vmess("f1min output file = %s ", file_f1min);
if (file_f1plus != NULL)vmess("f1plus output file = %s ", file_f1plus);
if (file_iter != NULL) vmess("Iterations output file = %s ", file_iter);
}
t1 = wallclock_time();
tread = t1-t0;
/*================ initializations ================*/
if (ixa || ixb) n2out = ixa + ixb + 1;
else if (reci) n2out = nxs;
else n2out = nshots;
mem = Nsyn*n2out*ntfft*sizeof(float)/1048576.0;
if (verbose) {
vmess("number of output traces = %d", n2out);
vmess("number of output samples = %d", ntfft);
vmess("Size of output data = %.1f Mb", mem);
}
/* dry-run of synthesis to get all x-positions calcalated by the integration */
synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nsyn, xrcv, xsrc, fxs2, fxs,
dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose);
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
if (verbose) {
vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn);
}
/*================ set variables for output data ================*/
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs+dxs*ixpossyn[0];
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
for (i = 0; i < n2; i++) {
hdrs_out[i].ns = n1;
hdrs_out[i].trid = 1;
hdrs_out[i].dt = dt*1000000;
hdrs_out[i].f1 = f1;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].trwf = n2out;
hdrs_out[i].scalco = -1000;
hdrs_out[i].gx = NINT(1000*(f2+i*d2));
hdrs_out[i].scalel = -1000;
hdrs_out[i].tracl = i+1;
}
/*================ number of Marchenko iterations ================*/
for (iter=0; iter<niter; iter++) {
t2 = wallclock_time();
/*================ construction of Ni(-t) = - \int R(x,t) Fop(t) ================*/
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
/* set Fop to zero, so new operator can be defined within ixpossyn points */
memset(&Fop[0].r, 0, Nsyn*nxs*nw*2*sizeof(float));
if (file_iter != NULL) {
writeDataIter(file_iter, iRN, hdrs_out, ntfft, nxs, d2, f2, n2out, Nsyn, xsyn, zsyn, iter);
/* N_0(t) = M_0(t) = -p0^-(x,-t) = -(R * T_d^inv)(-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
/* p0^-(x,t) = iRN = (R * T_d^inv)(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
applyMute(Ni, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* even iterations: => - f_1^-(-t) = windowed(iRN) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
//ix = NINT((xsrc[i]-fxs)/dxs);
ix = ixpossyn[i];
//fprintf(stderr,"i=%d xsrc=%f ix=%d ixpossyn=%d\n", i, xsrc[i], ix, ixpossyn[i]);
f2p[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
ix = ixpossyn[i];
green[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts-j]+ pmin[l*nxs*nts+i*nts+j];
}
}
}
}
else if (iter==1) {
/* Ni(x,t) = -\int R(x,t) M_0(x,-t) dxdt*/
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
applyMute(Ni, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
ix = ixpossyn[i];
f1plus[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
}
else {
/* in next iteration use time reversal (and scale with scalar w)*/
/* N_k(x,t) = -N_(k-1)(x,-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
applyMute(Ni, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* compute full Green's function G = p^+(-t) + p^-(t) */
if (iter == niter-1) {
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
} /* end if for last iteration */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
if (iter % 2 == 0) { /* even iterations: => - f_1^- (-t) = pmin(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
}
else {/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
}
} /* end else (iter!=0) branch */
t3 = wallclock_time();
tsyn += t3 - t2;
/* compute up and downgoing Green's function G^+,- G^+,+ */
/* f1 based scheme */
if (iter == niter-1) {
/* transform f1+ to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
for (j = 0; j < nts; j++) {
trace[j] = f1plus[l*nxs*nts+i*nts+j];
}
rc1fft(&trace[0],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
}
}
}
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
/* compute upgoing Green's G^-,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
}
}
}
/* Apply mute with window for Gmin */
applyMute(Gmin, mute, smooth, 1, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* transform f1- to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
for (j = 0; j < nts; j++) {
trace[j] = f1min[l*nxs*nts+i*nts+j];
}
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = -ctrace[nw_low+iw].i;
}
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
/* compute downgoing Green's G^+,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+nts-j];
}
}
}
} /* end if for last iteration */
/* transform muted Ni to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
rc1fft(&Ni[l*nxs*nts+i*nts],ctrace,ntfft,-1);
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
}
}
}
t2 = wallclock_time();
tfft += t2 - t3;
if (verbose) vmess("*** Iteration %d finished ***", iter);
} /* end of iterations */
t2 = wallclock_time();
if (verbose) {
vmess("Total CPU-time marchenko = %.3f", t2-t0);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("and CPU-time fft data = %.3f", tfft);
vmess("and CPU-time read data = %.3f", tread);
}
/*================ write output files ================*/
/*
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs;
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
*/
fp_out = fopen(file_green, "w+");
if (fp_out==NULL) verr("error on creating output file %s", file_green);
if (file_gmin != NULL) {
fp_gmin = fopen(file_gmin, "w+");
if (fp_gmin==NULL) verr("error on creating output file %s", file_gmin);
}
if (file_gplus != NULL) {
fp_gplus = fopen(file_gplus, "w+");
if (fp_gplus==NULL) verr("error on creating output file %s", file_gplus);
}
if (file_f2 != NULL) {
fp_f2 = fopen(file_f2, "w+");
if (fp_f2==NULL) verr("error on creating output file %s", file_f2);
}
if (file_pmin != NULL) {
fp_pmin = fopen(file_pmin, "w+");
if (fp_pmin==NULL) verr("error on creating output file %s", file_pmin);
}
if (file_f1plus != NULL) {
fp_f1plus = fopen(file_f1plus, "w+");
if (fp_f1plus==NULL) verr("error on creating output file %s", file_f1plus);
}
if (file_f1min != NULL) {
fp_f1min = fopen(file_f1min, "w+");
if (fp_f1min==NULL) verr("error on creating output file %s", file_f1min);
}
tracf = 1;
for (l = 0; l < Nsyn; l++) {
if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
else {
if (reci) f2 = fxs;
else f2 = fxf;
}
for (i = 0; i < n2; i++) {
hdrs_out[i].fldr = l+1;
hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
hdrs_out[i].selev = NINT(zsyn[l]*1000);
hdrs_out[i].sdepth = NINT(-zsyn[l]*1000);
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
}
ret = writeData(fp_out, (float *)&green[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
if (file_gmin != NULL) {
ret = writeData(fp_gmin, (float *)&Gmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gplus != NULL) {
ret = writeData(fp_gplus, (float *)&Gplus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f2 != NULL) {
ret = writeData(fp_f2, (float *)&f2p[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_pmin != NULL) {
ret = writeData(fp_pmin, (float *)&pmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1plus != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1plus[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1plus[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1plus[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1plus, (float *)&f1plus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1min != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1min[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1min[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1min[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1min, (float *)&f1min[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
}
ret = fclose(fp_out);
if (file_gplus != NULL) {ret += fclose(fp_gplus);}
if (file_gmin != NULL) {ret += fclose(fp_gmin);}
if (file_f2 != NULL) {ret += fclose(fp_f2);}
if (file_pmin != NULL) {ret += fclose(fp_pmin);}
if (file_f1plus != NULL) {ret += fclose(fp_f1plus);}
if (file_f1min != NULL) {ret += fclose(fp_f1min);}
if (ret < 0) verr("err %d on closing output file",ret);
if (verbose) {
t1 = wallclock_time();
vmess("and CPU-time write data = %.3f", t1-t2);
}
/*================ free memory ================*/
free(hdrs_out);
free(tapersy);
exit(0);
}
/*================ Convolution and Integration ================*/
void synthesis(complex *Refl, complex *Fop, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int reci, int nshots, int verbose)
{
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
float *rdata, *p, **dum, x0, x1;
static double t0, t1, tfft, t;
complex *sum, *cdata, tmp, ts, to;
int npe;
size = nxs*nts;
nfreq = ntfft/2+1;
/* scale factor 1/N for backward FFT,
* scale dt for correlation/convolution along time,
* scale dx (or dxsrc) for integration over receiver (or shot) coordinates */
scl = 1.0*dt/((float)ntfft);
t0 = wallclock_time();
/* reset output data to zero */
memset(&iRN[0], 0, Nsyn*nxs*nts*sizeof(float));
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
/* if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
*/
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
/*================ SYNTHESIS ================*/
#ifdef _OPENMP
npe = omp_get_max_threads();
/* parallelisation is over number of virtual source positions (Nsyn) */
if (npe > Nsyn) {
vmess("Number of OpenMP threads set to %d (was %d)", Nsyn, npe);
omp_set_num_threads(Nsyn);
}
#endif
#pragma omp parallel default(none) \
shared(iRN, dx, npe, nw, verbose) \
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
shared(Refl, Nsyn, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
shared(nx, ixa, ixb, dxsrc, iox, inx, k, nfreq, nw_low, nw_high) \
shared(Fop, size, nts, ntfft, scl, ixsrc, stderr) \
private(l, x0, x1, ix, dosrc, j, m, i, ixrcv, sum, rdata, tmp, ts, to)
{ /* start of parallel region */
sum = (complex *)malloc(nfreq*sizeof(complex));
rdata = (float *)calloc(ntfft,sizeof(float));
#pragma omp for
for (l = 0; l < Nsyn; l++) {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (j = nw_low, m = 0; j <= nw_high; j++, m++) {
for (i = iox; i < inx; i++) {
ixrcv = NINT((xrcv[k*nx+i]-fxs)/dxs);
tmp = Fop[l*nw*nxs+m*nxs+ixrcv];
sum[j].r += Refl[k*nw*nx+m*nx+i].r*tmp.r -
Refl[k*nw*nx+m*nx+i].i*tmp.i;
sum[j].i += Refl[k*nw*nx+m*nx+i].i*tmp.r +
Refl[k*nw*nx+m*nx+i].r*tmp.i;
}
}
#pragma omp critical
{
cr1fft(sum, rdata, ntfft, 1);
}
/* dx = receiver distance */
for (j = 0; j < nts; j++)
iRN[l*size+ix*nts+j] += rdata[j]*scl*dx;
} /* end of parallel Nsyn loop */
free(sum);
free(rdata);
#pragma omp single
{
#ifdef _OPENMP
npe = omp_get_num_threads();
#endif
}
} /* end of parallel region */
if (verbose>3) vmess("*** Shot gather %d processed ***", k);
} /* end of nshots (k) loop */
t = wallclock_time() - t0;
if (verbose) {
vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
}
return;
}
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose)
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
{
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
float *rdata, *p, **dum, x0, x1;
static double t0, t1, tfft, t;
complex *sum, *cdata, tmp, ts, to;
int npe;
/*================ SYNTHESIS ================*/
for (l = 0; l < 1; l++) { /* assuming all synthesis operators cover the same lateral area */
// for (l = 0; l < Nsyn; l++) {
*npossyn=0;
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
if (ixa || ixb) {
if (reci == 0) {
x0 = xsyn[l]-ixb*dxsrc;
x1 = xsyn[l]+ixa*dxsrc;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) continue;
ix = NINT((xsrc[k]-x0)/dxsrc);
dosrc = 1;
}
else if (reci == 1) {
x0 = xsyn[l]-ixb*dxs;
x1 = xsyn[l]+ixa*dxs;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) dosrc = 0;
else dosrc = 1;
ix = NINT((xsrc[k]-x0)/dxs);
}
else if (reci == 2) {
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
x0 = xsyn[l]-ixb*dx;
x1 = xsyn[l]+ixa*dx;
if ((xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if ((xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
}
}
else {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;