Newer
Older
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>
int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
int readShotData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, int mode, float weight, int verbose);
int readTinvData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, int Nsyn, int nx, int ntfft, int mode, int *maxval, float *tinv, int hw, int verbose);
int writeDataIter(char *file_iter, float *data, segy *hdrs, int n1, int n2, float d2, float f2, int n2out, int Nsyn, float *xsyn, float *zsyn, int iter);
void name_ext(char *filename, char *extension);
void applyMute( float *data, int *mute, int smooth, int above, int Nsyn, int nxs, int nt, int *xrcvsyn, int npossyn, int shift);
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);
void synthesis(complex *Refl, complex *Fop, float *Top, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int mode, int reci, int nshots, int *ixpossyn, int npossyn, double *tfft, int verbose);
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" MARCHENKO - Iterative Green's functions retrieval in frequency domain",
" ",
" marchenko file_tinv= file_shot= nshots= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_tinv= ............... focusing operator(s)",
" file_shot= ............... shot records with Reflection data",
" ",
" Optional parameters: ",
" ",
" tap=0 .................... lateral taper focusing(1), shot(2) or both(3)",
" ntap=0 ................... number of taper points at boundaries",
" fmax=70 .................. maximum frequency",
" MARCHENKO ITERATIONS ",
" niter=10 ................. number of iterations",
" MUTE WINDOW ",
" above=0 .................. mute above(1), around(0) or below(-1) the first travel times of file_tinv",
" shift=12 ................. number of points above(positive) / below(negative) travel time for mute",
" hw=8 ..................... window in time samples to look for maximum in next trace",
" smooth=5 ................. number of points to smooth mute with cosine window",
" weight=1 ................. weight factor for summation of muted field with Tinv",
" OUTPUT DEFINITION ",
" file_green= .............. output file with full Green function(s)",
" file_gplus= .............. output file with G+ ",
" file_gmin= ............... output file with G- ",
" file_f1plus= ............. output file with f1+ ",
" file_f1min= .............. output file with f1- ",
" file_pplus= .............. output file with p+ ",
" file_f2= ................. output file with f2 (=p+) ",
" file_pmin= ............... output file with p- ",
" file_iter= ............... output file with N for each iteration",
" verbose=0 ................ silent option; >0 displays info",
" ",
" ",
" author : Jan Thorbecke : 2016 (j.w.thorbecke@tudelft.nl)",
" ",
NULL};
/**************** end self doc ***********************************/
int main (int argc, char **argv)
{
FILE *fp_out, *fp_f1plus, *fp_f1min;
FILE *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin;
int i, j, l, ret, nshots, Nsyn, nt, nx, nts, nxs, ngath;
int size, n1, n2, ntap, tap, di, ntraces;
int nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn;
int reci, mode, ixa, ixb, n2out, verbose, ntfft;
int iter, niter, tracf, *muteW;
int hw, smooth, above, shift, *ixpossyn, npossyn, ix;
float fmin, fmax, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn;
double t0, t1, t2, t3, tsyn, tread, tfft, tcopy;
float d1, d2, f1, f2, fxs, ft, fx, *xsyn, dxsrc;
float *green, *f2p, *pmin, *G_d, dt, dx, dxs, scl, mem;
float *f1plus, *f1min, *iRN, *Ni, *trace, *Gmin, *Gplus;
float xmin, xmax, weight;
complex *Refl, *Fop;
char *file_tinv, *file_shot, *file_green, *file_iter;
char *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin;
segy *hdrs_out;
initargs(argc, argv);
requestdoc(1);
tsyn = tread = tfft = tcopy = 0.0;
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
t0 = wallclock_time();
if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL;
if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL;
if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL;
if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL;
if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL;
if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL;
if (!getparstring("file_f2", &file_f2)) file_f2 = NULL;
if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL;
if (!getparstring("file_iter", &file_iter)) file_iter = NULL;
if (!getparint("verbose", &verbose)) verbose = 0;
if (file_tinv == NULL && file_shot == NULL)
verr("file_tinv and file_shot cannot be both input pipe");
if (!getparstring("file_green", &file_green)) {
if (verbose) vwarn("parameter file_green not found, assume pipe");
file_green = NULL;
}
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparfloat("fmax", &fmax)) fmax = 70.0;
if (!getparint("ixa", &ixa)) ixa = 0;
if (!getparint("ixb", &ixb)) ixb = ixa;
if (!getparint("reci", &reci)) reci = 0;
if (!getparfloat("weight", &weight)) weight = 1.0;
if (!getparint("tap", &tap)) tap = 0;
if (!getparint("ntap", &ntap)) ntap = 0;
if(!getparint("niter", &niter)) niter = 10;
if(!getparint("hw", &hw)) hw = 15;
if(!getparint("smooth", &smooth)) smooth = 5;
if(!getparint("above", &above)) above = 0;
if(!getparint("shift", &shift)) shift=12;
if (reci && ntap) vwarn("tapering influences the reciprocal result");
/*================ Reading info about shot and initial operator sizes ================*/
ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */
ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
Nsyn = ngath;
nxs = n2;
nts = n1;
dxs = d2;
fxs = f2;
ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */
ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
nshots = ngath;
if (!getparfloat("dt", &dt)) dt = d1;
ntfft = optncr(MAX(nt, nts));
nfreq = ntfft/2+1;
nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1);
nw_low = MAX(nw_low, 1);
nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1);
nw = nw_high - nw_low + 1;
scl = 1.0/((float)ntfft);
/*================ Allocating all data arrays ================*/
Fop = (complex *)calloc(nxs*nw*Nsyn,sizeof(complex));
green = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f2p = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
pmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1plus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1min = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
iRN = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Ni = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
G_d = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
muteW = (int *)calloc(Nsyn*nxs,sizeof(int));
trace = (float *)malloc(ntfft*sizeof(float));
ixpossyn = (int *)malloc(nxs*sizeof(int));
xrcvsyn = (float *)calloc(Nsyn*nxs,sizeof(float));
xsyn = (float *)malloc(Nsyn*sizeof(float));
zsyn = (float *)malloc(Nsyn*sizeof(float));
xnxsyn = (int *)calloc(Nsyn,sizeof(int));
tapersy = (float *)malloc(nxs*sizeof(float));
Refl = (complex *)malloc(nw*nx*nshots*sizeof(complex));
tapersh = (float *)malloc(nx*sizeof(float));
xsrc = (float *)calloc(nshots,sizeof(float));
zsrc = (float *)calloc(nshots,sizeof(float));
xrcv = (float *)calloc(nshots*nx,sizeof(float));
xnx = (int *)calloc(nshots,sizeof(int));
/*================ Read and define mute window based on focusing operator(s) ================*/
/* G_d = p_0^+ = G_d (-t) ~ Tinv */
mode=-1; /* apply complex conjugate to read in data */
readTinvData(file_tinv, xrcvsyn, xsyn, zsyn, xnxsyn, Nsyn, nxs, ntfft,
mode, muteW, G_d, hw, verbose);
/* reading data added zero's to the number of time samples to be the same as ntfft */
/* define tapers to taper edges of acquisition */
if (tap == 1 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nxs-ntap; j++)
tapersy[j] = 1.0;
for (j = nxs-ntap; j < nxs; j++)
tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nxs; j++) tapersy[j] = 1.0;
}
if (tap == 1 || tap == 3) {
if (verbose) vmess("Taper for operator applied ntap=%d", ntap);
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < nxs; i++) {
for (j = 0; j < nts; j++) {
G_d[l*nxs*nts+i*nts+j] *= tapersy[i];
}
}
}
}
/* check consistency of header values */
if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0];
fxs2 = fxs + (float)(nxs-1)*dxs;
dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1);
if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
if (dxf != 0) dxs = fabs(dxf);
vmess("dx in operator => %f", dxs);
}
/*================ Reading shot records ================*/
mode=1;
readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft,
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
tapersh = (float *)malloc(nx*sizeof(float));
if (tap == 2 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nx-ntap; j++)
tapersh[j] = 1.0;
for (j = nx-ntap; j < nx; j++)
tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nx; j++) tapersh[j] = 1.0;
}
if (tap == 2 || tap == 3) {
if (verbose) vmess("Taper for shots applied ntap=%d", ntap);
for (l = 0; l < nshots; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nx; i++) {
Refl[l*nx*nw+j*nx+i].r *= tapersh[i];
Refl[l*nx*nw+j*nx+i].i *= tapersh[i];
}
}
}
}
free(tapersh);
/* check consistency of header values */
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
fxf = xsrc[0];
if (nx > 1) dxf = (xrcv[0] - xrcv[nx-1])/(float)(nx-1);
else dxf = d2;
if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
if (dxf != 0) dx = fabs(dxf);
else verr("gx hdrs not set");
vmess("dx used => %f", dx);
}
dxsrc = (float)xsrc[1] - xsrc[0];
if (dxsrc == 0) {
vwarn("sx hdrs are not filled in!!");
dxsrc = dx;
}
/*================ Check the size of the files ================*/
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
}
di = NINT(dxf/dxs);
if ((NINT(di*dxs) != NINT(dxf)) && verbose)
vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
if (nt != nts)
vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts);
if (verbose) {
vmess("Number of focusing operators = %d", Nsyn);
vmess("Number of receivers in focusop = %d", nxs);
vmess("number of shots = %d", nshots);
vmess("number of receiver/shot = %d", nx);
vmess("first model position = %.2f", fxs);
vmess("last model position = %.2f", fxs2);
vmess("first source position fxf = %.2f", fxf);
vmess("source distance dxsrc = %.2f", dxsrc);
vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc);
vmess("receiver distance dxf = %.2f", dxf);
vmess("direction of increasing traces = %d", di);
vmess("number of time samples (nt,nts) = %d (%d,%d)", ntfft, nt, nts);
vmess("time sampling = %e ", dt);
if (file_green != NULL) vmess("Green output file = %s ", file_green);
if (file_gmin != NULL) vmess("Gmin output file = %s ", file_gmin);
if (file_gplus != NULL) vmess("Gplus output file = %s ", file_gplus);
if (file_pmin != NULL) vmess("Pmin output file = %s ", file_pmin);
if (file_f2 != NULL) vmess("f2 (=pplus) output file = %s ", file_f2);
if (file_f1min != NULL) vmess("f1min output file = %s ", file_f1min);
if (file_f1plus != NULL)vmess("f1plus output file = %s ", file_f1plus);
if (file_iter != NULL) vmess("Iterations output file = %s ", file_iter);
}
/*================ initializations ================*/
if (ixa || ixb) n2out = ixa + ixb + 1;
else if (reci) n2out = nxs;
else n2out = nshots;
mem = Nsyn*n2out*ntfft*sizeof(float)/1048576.0;
if (verbose) {
vmess("number of output traces = %d", n2out);
vmess("number of output samples = %d", ntfft);
vmess("Size of output data/file = %.1f MB", mem);
memcpy(Ni, G_d, Nsyn*nxs*ntfft*sizeof(float));
/* dry-run of synthesis to get all x-positions calcalated by the integration */
synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nsyn, xrcv, xsrc, fxs2, fxs,
dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose);
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
if (verbose) {
vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn);
}
/*================ set variables for output data ================*/
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs+dxs*ixpossyn[0];
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
for (i = 0; i < n2; i++) {
hdrs_out[i].ns = n1;
hdrs_out[i].trid = 1;
hdrs_out[i].dt = dt*1000000;
hdrs_out[i].f1 = f1;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].trwf = n2out;
hdrs_out[i].scalco = -1000;
hdrs_out[i].gx = NINT(1000*(f2+i*d2));
hdrs_out[i].scalel = -1000;
hdrs_out[i].tracl = i+1;
}
t1 = wallclock_time();
tread = t1-t0;
/*================ number of Marchenko iterations ================*/
for (iter=0; iter<niter; iter++) {
t2 = wallclock_time();
/*================ construction of Ni(-t) = - \int R(x,t) Fop(t) ================*/
/* set Fop to zero, so new operator can be defined within ixpossyn points */
//memset(&Fop[0].r, 0, Nsyn*nxs*nw*2*sizeof(float));
synthesis(Refl, Fop, Ni, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
t3 = wallclock_time();
tsyn += t3 - t2;
if (file_iter != NULL) {
writeDataIter(file_iter, iRN, hdrs_out, ntfft, nxs, d2, f2, n2out, Nsyn, xsyn, zsyn, iter);
/* N_k(x,t) = -N_(k-1)(x,-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
/* N_0(t) = M_0(t) = -p0^-(x,-t) = -(R * T_d^inv)(-t) */
/* p0^-(x,t) = iRN = (R * T_d^inv)(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, ixpossyn, npossyn, shift);
/* even iterations: => - f_1^-(-t) = windowed(iRN) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] = -Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] = -Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
ix = ixpossyn[i];
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
ix = ixpossyn[i];
green[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts-j]+ pmin[l*nxs*nts+i*nts+j];
}
}
}
}
else if (iter==1) {
/* Ni(x,t) = -\int R(x,t) M_0(x,-t) dxdt*/
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, ixpossyn, npossyn, shift);
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
ix = ixpossyn[i];
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
}
else {
/* next iterations */
/* N_k(x,t) = -N_(k-1)(x,-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, ixpossyn, npossyn, shift);
/* compute full Green's function G = p^+(-t) + p^-(t) */
if (iter == niter-1) {
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
} /* end if for last iteration */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
if (iter % 2 == 0) { /* even iterations: => - f_1^- (-t) = pmin(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
}
else {/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
}
} /* end else (iter!=0) branch */
t2 = wallclock_time();
tcopy += t2 - t3;
if (verbose) vmess("*** Iteration %d finished ***", iter);
} /* end of iterations */
free(Ni);
free(G_d);
/* compute upgoing Green's function G^+,- */
if (file_gmin != NULL) {
Gmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
/* use f1+ as operator on R in frequency domain */
mode=1;
synthesis(Refl, Fop, f1plus, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
/* compute upgoing Green's G^-,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
}
/* Apply mute with window for Gmin */
applyMute(Gmin, muteW, smooth, 1, Nsyn, nxs, nts, ixpossyn, npossyn, shift);
} /* end if Gmin */
/* compute downgoing Green's function G^+,+ */
if (file_gplus != NULL) {
Gplus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
/* use f1-(*) as operator on R in frequency domain */
mode=-1;
synthesis(Refl, Fop, f1min, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
/* compute downgoing Green's G^+,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+nts-j];
} /* end if Gplus */
t2 = wallclock_time();
if (verbose) {
vmess("Total CPU-time marchenko = %.3f", t2-t0);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("with CPU-time copy array = %.3f", tcopy);
vmess(" CPU-time fft data = %.3f", tfft);
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
vmess("and CPU-time read data = %.3f", tread);
}
/*================ write output files ================*/
/*
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs;
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
*/
fp_out = fopen(file_green, "w+");
if (fp_out==NULL) verr("error on creating output file %s", file_green);
if (file_gmin != NULL) {
fp_gmin = fopen(file_gmin, "w+");
if (fp_gmin==NULL) verr("error on creating output file %s", file_gmin);
}
if (file_gplus != NULL) {
fp_gplus = fopen(file_gplus, "w+");
if (fp_gplus==NULL) verr("error on creating output file %s", file_gplus);
}
if (file_f2 != NULL) {
fp_f2 = fopen(file_f2, "w+");
if (fp_f2==NULL) verr("error on creating output file %s", file_f2);
}
if (file_pmin != NULL) {
fp_pmin = fopen(file_pmin, "w+");
if (fp_pmin==NULL) verr("error on creating output file %s", file_pmin);
}
if (file_f1plus != NULL) {
fp_f1plus = fopen(file_f1plus, "w+");
if (fp_f1plus==NULL) verr("error on creating output file %s", file_f1plus);
}
if (file_f1min != NULL) {
fp_f1min = fopen(file_f1min, "w+");
if (fp_f1min==NULL) verr("error on creating output file %s", file_f1min);
}
tracf = 1;
for (l = 0; l < Nsyn; l++) {
if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
else {
if (reci) f2 = fxs;
else f2 = fxf;
}
for (i = 0; i < n2; i++) {
hdrs_out[i].fldr = l+1;
hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
hdrs_out[i].selev = NINT(zsyn[l]*1000);
hdrs_out[i].sdepth = NINT(-zsyn[l]*1000);
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
}
ret = writeData(fp_out, (float *)&green[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
if (file_gmin != NULL) {
ret = writeData(fp_gmin, (float *)&Gmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gplus != NULL) {
ret = writeData(fp_gplus, (float *)&Gplus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f2 != NULL) {
ret = writeData(fp_f2, (float *)&f2p[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_pmin != NULL) {
ret = writeData(fp_pmin, (float *)&pmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1plus != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1plus[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1plus[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1plus[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1plus, (float *)&f1plus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1min != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1min[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1min[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1min[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1min, (float *)&f1min[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
}
ret = fclose(fp_out);
if (file_gplus != NULL) {ret += fclose(fp_gplus);}
if (file_gmin != NULL) {ret += fclose(fp_gmin);}
if (file_f2 != NULL) {ret += fclose(fp_f2);}
if (file_pmin != NULL) {ret += fclose(fp_pmin);}
if (file_f1plus != NULL) {ret += fclose(fp_f1plus);}
if (file_f1min != NULL) {ret += fclose(fp_f1min);}
if (ret < 0) verr("err %d on closing output file",ret);
if (verbose) {
t1 = wallclock_time();
vmess("and CPU-time write data = %.3f", t1-t2);
}
/*================ free memory ================*/
free(hdrs_out);
free(tapersy);
exit(0);
}
/*================ Convolution and Integration ================*/
void synthesis(complex *Refl, complex *Fop, float *Top, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int mode, int reci, int nshots, int *ixpossyn, int npossyn, double *tfft, int verbose)
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, iw, ix, ixrcv, k;
float *rtrace;
complex *sum, tmp, *ctrace;
int npe;
static int first=1;
static double t0, t1, t;
size = nxs*nts;
nfreq = ntfft/2+1;
/* scale factor 1/N for backward FFT,
* scale dt for correlation/convolution along time,
* scale dx (or dxsrc) for integration over receiver (or shot) coordinates */
scl = 1.0*dt/((float)ntfft);
#ifdef _OPENMP
npe = omp_get_max_threads();
/* parallelisation is over number of virtual source positions (Nsyn) */
if (npe > Nsyn) {
vmess("Number of OpenMP threads set to %d (was %d)", Nsyn, npe);
omp_set_num_threads(Nsyn);
}
#endif
t0 = wallclock_time();
/* reset output data to zero */
memset(&iRN[0], 0, Nsyn*nxs*nts*sizeof(float));
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
ctrace = (complex *)calloc(ntfft,sizeof(complex));
if (!first) {
/* transform muted Ni (Top) to frequency domain, input for next iteration */
for (l = 0; l < Nsyn; l++) {
memset(&Fop[l*nxs*nw].r, 0, nxs*nw*2*sizeof(float));
for (i = 0; i < npossyn; i++) {
rc1fft(&Top[l*size+i*nts],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = mode*ctrace[nw_low+iw].i;
}
}
}
}
else { /* only for first call to synthesis */
/* transform G_d to frequency domain, over all nxs traces */
first=0;
for (l = 0; l < Nsyn; l++) {
memset(&Fop[l*nxs*nw].r, 0, nxs*nw*2*sizeof(float));
for (i = 0; i < nxs; i++) {
rc1fft(&Top[l*size+i*nts],ctrace,ntfft,-1);
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+i].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+i].i = mode*ctrace[nw_low+iw].i;
}
}
}
}
free(ctrace);
t1 = wallclock_time();
*tfft += t1 - t0;
for (k=0; k<nshots; k++) {
/* if (verbose>=3) {
vmess("source position: %.2f ixpossyn=%d", xsrc[k], ixpossyn[k]);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
*/
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
/*================ SYNTHESIS ================*/
#pragma omp parallel default(none) \
shared(iRN, dx, npe, nw, verbose) \
shared(Refl, Nsyn, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
shared(nx, ixa, ixb, dxsrc, iox, inx, k, nfreq, nw_low, nw_high) \
shared(Fop, size, nts, ntfft, scl, stderr) \
private(l, ix, j, m, i, ixrcv, sum, rtrace, tmp)
{ /* start of parallel region */
sum = (complex *)malloc(nfreq*sizeof(complex));
rtrace = (float *)calloc(ntfft,sizeof(float));
#pragma omp for schedule(guided,1)
for (l = 0; l < Nsyn; l++) {
ix = k;
/* multiply R with Fop and sum over nx */
memset(&sum[0].r,0,nfreq*2*sizeof(float));
//for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (j = nw_low, m = 0; j <= nw_high; j++, m++) {
for (i = iox; i < inx; i++) {
ixrcv = NINT((xrcv[k*nx+i]-fxs)/dxs);
tmp = Fop[l*nw*nxs+m*nxs+ixrcv];
sum[j].r += Refl[k*nw*nx+m*nx+i].r*tmp.r -
Refl[k*nw*nx+m*nx+i].i*tmp.i;
sum[j].i += Refl[k*nw*nx+m*nx+i].i*tmp.r +
Refl[k*nw*nx+m*nx+i].r*tmp.i;
}
}
/* transfrom result back to time domain */
cr1fft(sum, rtrace, ntfft, 1);
/* dx = receiver distance */
for (j = 0; j < nts; j++)
iRN[l*size+ix*nts+j] += rtrace[j]*scl*dx;
} /* end of parallel Nsyn loop */
free(sum);
free(rtrace);
#pragma omp single
{
#ifdef _OPENMP
npe = omp_get_num_threads();
#endif
}
} /* end of parallel region */
if (verbose>3) vmess("*** Shot gather %d processed ***", k);
} /* end of nshots (k) loop */
t = wallclock_time() - t0;
if (verbose) {
vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
}
return;
}
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose)
int iox, inx;
int i, l, ixsrc, ix, dosrc, k;
float x0, x1;
/*================ SYNTHESIS ================*/
for (l = 0; l < 1; l++) { /* assuming all synthesis operators cover the same lateral area */
// for (l = 0; l < Nsyn; l++) {
*npossyn=0;
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
if (ixa || ixb) {
if (reci == 0) {
x0 = xsyn[l]-ixb*dxsrc;
x1 = xsyn[l]+ixa*dxsrc;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) continue;
ix = NINT((xsrc[k]-x0)/dxsrc);
dosrc = 1;
}
else if (reci == 1) {
x0 = xsyn[l]-ixb*dxs;
x1 = xsyn[l]+ixa*dxs;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) dosrc = 0;
else dosrc = 1;
ix = NINT((xsrc[k]-x0)/dxs);
}
else if (reci == 2) {
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
x0 = xsyn[l]-ixb*dx;
x1 = xsyn[l]+ixa*dx;
if ((xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if ((xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
}
}
else {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
}
if (reci == 1 && dosrc) ix = NINT((xsrc[k]-x0)/dxs);
if (reci < 2 && dosrc) {
ixpossyn[*npossyn]=ixsrc;
*npossyn += 1;
}
if (verbose>=3) {
vmess("ixpossyn[%d] = %d ixsrc=%d ix=%d", *npossyn-1, ixpossyn[*npossyn-1], ixsrc, ix);
}
if (reci == 1 || reci == 2) {
for (i = iox; i < inx; i++) {
if ((xrcv[k*nx+i] < x0) || (xrcv[k*nx+i] > x1)) continue;
if (reci == 1) ix = NINT((xrcv[k*nx+i]-x0)/dxs);
else ix = NINT((xrcv[k*nx+i]-x0)/dx);