Newer
Older
/*
* Copyright (c) 2017 by the Society of Exploration Geophysicists.
* For more information, go to http://software.seg.org/2017/00XX .
* You must read and accept usage terms at:
* http://software.seg.org/disclaimer.txt before use.
*/
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>
int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
int readShotData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, int mode, float scale, float tsq, int verbose);
int readTinvData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, int Nfoc, int nx, int ntfft, int mode, int *maxval, float *tinv, int hw, int verbose);
int writeDataIter(char *file_iter, float *data, segy *hdrs, int n1, int n2, float d2, float f2, int n2out, int Nfoc, float *xsyn, float *zsyn, int iter);
void name_ext(char *filename, char *extension);
void applyMute(float *data, int *mute, int smooth, int above, int Nfoc, int nxs, int nt, int *xrcvsyn, int npossyn, int shift);
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);
void synthesis(complex *Refl, complex *Fop, float *Top, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nfoc, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int mode, int reci, int nshots, int *ixpossyn, int npossyn, double *tfft, int verbose);
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nfoc, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" MARCHENKO - Iterative Green's function and focusing functions retrieval",
" marchenko file_tinv= file_shot= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_tinv= ............... direct arrival from focal point: G_d",
" file_shot= ............... Reflection response: R",
" ",
" Optional parameters: ",
" ",
" tap=0 .................... lateral taper focusing(1), shot(2) or both(3)",
" ntap=0 ................... number of taper points at boundaries",
" fmin=0 ................... minimum frequency in the Fourier transform",
" fmax=70 .................. maximum frequency in the Fourier transform",
" MARCHENKO ITERATIONS ",
" niter=10 ................. number of iterations",
" above=0 .................. mute above(1), around(0) or below(-1) the first travel times of file_tinv",
" shift=12 ................. number of points above(positive) / below(negative) travel time for mute",
" hw=8 ..................... window in time samples to look for maximum in next trace",
" smooth=5 ................. number of points to smooth mute with cosine window",
" REFLECTION RESPONSE CORRECTION ",
" tsq=0.0 .................. scale factor n for t^n for true amplitude recovery",
" scale=2 .................. scale factor of R for summation of Ni with G_d",
" pad=0 .................... amount of samples to pad the reflection series",
" OUTPUT DEFINITION ",
" file_green= .............. output file with full Green function(s)",
" file_gplus= .............. output file with G+ ",
" file_gmin= ............... output file with G- ",
" file_f1plus= ............. output file with f1+ ",
" file_f1min= .............. output file with f1- ",
" file_f2= ................. output file with f2 (=p+) ",
" file_pplus= .............. output file with p+ ",
" file_pmin= ............... output file with p- ",
" file_iter= ............... output file with -Ni(-t) for each iteration",
" verbose=0 ................ silent option; >0 displays info",
" ",
" ",
" author : Jan Thorbecke : 2016 (j.w.thorbecke@tudelft.nl)",
" ",
NULL};
/**************** end self doc ***********************************/
int main (int argc, char **argv)
{
FILE *fp_out, *fp_f1plus, *fp_f1min;
FILE *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin;
int i, j, l, ret, nshots, Nfoc, nt, nx, nts, nxs, ngath;
int size, n1, n2, ntap, tap, di, ntraces, pad;
int nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn;
int reci, mode, ixa, ixb, n2out, verbose, ntfft;
int iter, niter, tracf, *muteW;
int hw, smooth, above, shift, *ixpossyn, npossyn, ix;
float fmin, fmax, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn;
double t0, t1, t2, t3, tsyn, tread, tfft, tcopy, energyNi, energyN0;
float d1, d2, f1, f2, fxs, ft, fx, *xsyn, dxsrc;
float *green, *f2p, *pmin, *G_d, dt, dx, dxs, scl, mem;
float *f1plus, *f1min, *iRN, *Ni, *trace, *Gmin, *Gplus;
float xmin, xmax, scale, tsq;
complex *Refl, *Fop;
char *file_tinv, *file_shot, *file_green, *file_iter;
char *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin;
segy *hdrs_out;
initargs(argc, argv);
requestdoc(1);
tsyn = tread = tfft = tcopy = 0.0;
t0 = wallclock_time();
if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL;
if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL;
if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL;
if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL;
if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL;
if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL;
if (!getparstring("file_f2", &file_f2)) file_f2 = NULL;
if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL;
if (!getparstring("file_iter", &file_iter)) file_iter = NULL;
if (!getparint("verbose", &verbose)) verbose = 0;
if (file_tinv == NULL && file_shot == NULL)
verr("file_tinv and file_shot cannot be both input pipe");
if (!getparstring("file_green", &file_green)) {
if (verbose) vwarn("parameter file_green not found, assume pipe");
file_green = NULL;
}
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparfloat("fmax", &fmax)) fmax = 70.0;
if (!getparint("ixa", &ixa)) ixa = 0;
if (!getparint("ixb", &ixb)) ixb = ixa;
// if (!getparint("reci", &reci)) reci = 0;
reci=0; // source-receiver reciprocity is not yet fully build into the code
if (!getparfloat("scale", &scale)) scale = 2.0;
if (!getparfloat("tsq", &tsq)) tsq = 0.0;
if (!getparint("tap", &tap)) tap = 0;
if (!getparint("ntap", &ntap)) ntap = 0;
if (!getparint("pad", &pad)) pad = 0;
if(!getparint("niter", &niter)) niter = 10;
if(!getparint("hw", &hw)) hw = 15;
if(!getparint("smooth", &smooth)) smooth = 5;
if(!getparint("above", &above)) above = 0;
if(!getparint("shift", &shift)) shift=12;
if (reci && ntap) vwarn("tapering influences the reciprocal result");
/*================ Reading info about shot and initial operator sizes ================*/
ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */
ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
nxs = n2;
nts = n1;
dxs = d2;
fxs = f2;
ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */
ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
nshots = ngath;
if (!getparfloat("dt", &dt)) dt = d1;
ntfft = optncr(MAX(nt+pad, nts+pad));
nfreq = ntfft/2+1;
nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1);
nw_low = MAX(nw_low, 1);
nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1);
nw = nw_high - nw_low + 1;
scl = 1.0/((float)ntfft);
/*================ Allocating all data arrays ================*/
Fop = (complex *)calloc(nxs*nw*Nfoc,sizeof(complex));
green = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
f2p = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
pmin = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
f1plus = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
f1min = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
iRN = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
Ni = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
G_d = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
muteW = (int *)calloc(Nfoc*nxs,sizeof(int));
trace = (float *)malloc(ntfft*sizeof(float));
ixpossyn = (int *)malloc(nxs*sizeof(int));
xrcvsyn = (float *)calloc(Nfoc*nxs,sizeof(float));
xsyn = (float *)malloc(Nfoc*sizeof(float));
zsyn = (float *)malloc(Nfoc*sizeof(float));
xnxsyn = (int *)calloc(Nfoc,sizeof(int));
tapersy = (float *)malloc(nxs*sizeof(float));
Refl = (complex *)malloc(nw*nx*nshots*sizeof(complex));
tapersh = (float *)malloc(nx*sizeof(float));
xsrc = (float *)calloc(nshots,sizeof(float));
zsrc = (float *)calloc(nshots,sizeof(float));
xrcv = (float *)calloc(nshots*nx,sizeof(float));
xnx = (int *)calloc(nshots,sizeof(int));
/*================ Read and define mute window based on focusing operator(s) ================*/
/* G_d = p_0^+ = G_d (-t) ~ Tinv */
mode=-1; /* apply complex conjugate to read in data */
readTinvData(file_tinv, xrcvsyn, xsyn, zsyn, xnxsyn, Nfoc, nxs, ntfft,
mode, muteW, G_d, hw, verbose);
/* reading data added zero's to the number of time samples to be the same as ntfft */
/* define tapers to taper edges of acquisition */
if (tap == 1 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nxs-ntap; j++)
tapersy[j] = 1.0;
for (j = nxs-ntap; j < nxs; j++)
tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nxs; j++) tapersy[j] = 1.0;
}
if (tap == 1 || tap == 3) {
if (verbose) vmess("Taper for operator applied ntap=%d", ntap);
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < nxs; i++) {
for (j = 0; j < nts; j++) {
G_d[l*nxs*nts+i*nts+j] *= tapersy[i];
}
}
}
}
/* check consistency of header values */
if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0];
fxs2 = fxs + (float)(nxs-1)*dxs;
dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1);
if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
if (dxf != 0) dxs = fabs(dxf);
vmess("dx in operator => %f", dxs);
}
/*================ Reading shot records ================*/
mode=1;
readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft,
mode, scale, tsq, verbose);
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
tapersh = (float *)malloc(nx*sizeof(float));
if (tap == 2 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nx-ntap; j++)
tapersh[j] = 1.0;
for (j = nx-ntap; j < nx; j++)
tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nx; j++) tapersh[j] = 1.0;
}
if (tap == 2 || tap == 3) {
if (verbose) vmess("Taper for shots applied ntap=%d", ntap);
for (l = 0; l < nshots; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nx; i++) {
Refl[l*nx*nw+j*nx+i].r *= tapersh[i];
Refl[l*nx*nw+j*nx+i].i *= tapersh[i];
}
}
}
}
free(tapersh);
/* check consistency of header values */
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
else dxf = d2;
if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
if (dxf != 0) dx = fabs(dxf);
else verr("gx hdrs not set");
vmess("dx used => %f", dx);
}
dxsrc = (float)xsrc[1] - xsrc[0];
if (dxsrc == 0) {
vwarn("sx hdrs are not filled in!!");
dxsrc = dx;
}
/*================ Check the size of the files ================*/
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
}
di = NINT(dxf/dxs);
if ((NINT(di*dxs) != NINT(dxf)) && verbose)
vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
if (nt != nts)
vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts);
if (verbose) {
vmess("Number of focusing operators = %d", Nfoc);
vmess("Number of receivers in focusop = %d", nxs);
vmess("number of shots = %d", nshots);
vmess("number of receiver/shot = %d", nx);
vmess("first model position = %.2f", fxs);
vmess("last model position = %.2f", fxs2);
vmess("first source position fxf = %.2f", fxf);
vmess("source distance dxsrc = %.2f", dxsrc);
vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc);
vmess("receiver distance dxf = %.2f", dxf);
vmess("direction of increasing traces = %d", di);
vmess("number of time samples (nt,nts) = %d (%d,%d)", ntfft, nt, nts);
vmess("time sampling = %e ", dt);
if (file_green != NULL) vmess("Green output file = %s ", file_green);
if (file_gmin != NULL) vmess("Gmin output file = %s ", file_gmin);
if (file_gplus != NULL) vmess("Gplus output file = %s ", file_gplus);
if (file_pmin != NULL) vmess("Pmin output file = %s ", file_pmin);
if (file_f2 != NULL) vmess("f2 (=pplus) output file = %s ", file_f2);
if (file_f1min != NULL) vmess("f1min output file = %s ", file_f1min);
if (file_f1plus != NULL)vmess("f1plus output file = %s ", file_f1plus);
if (file_iter != NULL) vmess("Iterations output file = %s ", file_iter);
}
/*================ initializations ================*/
if (ixa || ixb) n2out = ixa + ixb + 1;
else if (reci) n2out = nxs;
else n2out = nshots;
mem = Nfoc*n2out*ntfft*sizeof(float)/1048576.0;
if (verbose) {
vmess("number of output traces = %d", n2out);
vmess("number of output samples = %d", ntfft);
vmess("Size of output data/file = %.1f MB", mem);
/* dry-run of synthesis to get all x-positions calcalated by the integration */
synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nfoc, xrcv, xsrc, fxs2, fxs,
dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose);
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
if (verbose) {
vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn);
}
/*================ set variables for output data ================*/
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs+dxs*ixpossyn[0];
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
for (i = 0; i < n2; i++) {
hdrs_out[i].ns = n1;
hdrs_out[i].trid = 1;
hdrs_out[i].dt = dt*1000000;
hdrs_out[i].f1 = f1;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].trwf = n2out;
hdrs_out[i].scalco = -1000;
hdrs_out[i].gx = NINT(1000*(f2+i*d2));
hdrs_out[i].scalel = -1000;
hdrs_out[i].tracl = i+1;
}
t1 = wallclock_time();
tread = t1-t0;
/*================ initialization ================*/
memcpy(Ni, G_d, Nfoc*nxs*ntfft*sizeof(float));
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
ix = ixpossyn[i];
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j];
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j];
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j];
}
}
}
/*================ start Marchenko iterations ================*/
for (iter=0; iter<niter; iter++) {
t2 = wallclock_time();
/*================ construction of Ni(-t) = - \int R(x,t) Ni(t) ================*/
synthesis(Refl, Fop, Ni, iRN, nx, nt, nxs, nts, dt, xsyn, Nfoc,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
t3 = wallclock_time();
tsyn += t3 - t2;
if (file_iter != NULL) {
writeDataIter(file_iter, iRN, hdrs_out, ntfft, nxs, d2, f2, n2out, Nfoc, xsyn, zsyn, iter);
/* N_k(x,t) = -N_(k-1)(x,-t) */
/* p0^-(x,t) += iRN = (R * T_d^inv)(t) */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
pmin[l*nxs*nts+i*nts+j] += iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
pmin[l*nxs*nts+i*nts+j] += iRN[l*nxs*nts+i*nts+j];
}
}
if (iter==0) energyN0 = energyNi;
if (verbose >=2) vmess(" - iSyn %d: Ni at iteration %d has energy %e; relative to N0 %e", l, iter, sqrt(energyNi),
sqrt(energyNi/energyN0));
}
/* apply mute window based on times of direct arrival (in muteW) */
applyMute(Ni, muteW, smooth, above, Nfoc, nxs, nts, ixpossyn, npossyn, shift);
/* update f2 */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
if (iter % 2 == 0) { /* even iterations update: => f_1^-(t) */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
else {/* odd iterations update: => f_1^+(t) */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
t2 = wallclock_time();
tcopy += t2 - t3;
if (verbose) vmess("*** Iteration %d finished ***", iter);
} /* end of iterations */
free(Ni);
free(G_d);
/* compute full Green's function G = int R * f2(t) + f2(-t) = Pplus + Pmin */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
/* set green to zero if mute-window exceeds nt/2 */
if (muteW[l*nxs+ixpossyn[i]] >= nts/2) {
memset(&green[l*nxs*nts+i*nts],0, sizeof(float)*nt);
continue;
}
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
/* compute upgoing Green's function G^+,- */
if (file_gmin != NULL) {
Gmin = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
/* use f1+ as operator on R in frequency domain */
synthesis(Refl, Fop, f1plus, iRN, nx, nt, nxs, nts, dt, xsyn, Nfoc,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
/* compute upgoing Green's G^-,+ */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
}
/* Apply mute with window for Gmin */
applyMute(Gmin, muteW, smooth, 1, Nfoc, nxs, nts, ixpossyn, npossyn, shift);
} /* end if Gmin */
/* compute downgoing Green's function G^+,+ */
if (file_gplus != NULL) {
Gplus = (float *)calloc(Nfoc*nxs*ntfft,sizeof(float));
/* use f1-(*) as operator on R in frequency domain */
synthesis(Refl, Fop, f1min, iRN, nx, nt, nxs, nts, dt, xsyn, Nfoc,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, mode,
reci, nshots, ixpossyn, npossyn, &tfft, verbose);
/* compute downgoing Green's G^+,+ */
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+nts-j];
} /* end if Gplus */
t2 = wallclock_time();
if (verbose) {
vmess("Total CPU-time marchenko = %.3f", t2-t0);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("with CPU-time copy array = %.3f", tcopy);
vmess(" CPU-time fft data = %.3f", tfft);
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
vmess("and CPU-time read data = %.3f", tread);
}
/*================ write output files ================*/
/*
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs;
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
*/
fp_out = fopen(file_green, "w+");
if (fp_out==NULL) verr("error on creating output file %s", file_green);
if (file_gmin != NULL) {
fp_gmin = fopen(file_gmin, "w+");
if (fp_gmin==NULL) verr("error on creating output file %s", file_gmin);
}
if (file_gplus != NULL) {
fp_gplus = fopen(file_gplus, "w+");
if (fp_gplus==NULL) verr("error on creating output file %s", file_gplus);
}
if (file_f2 != NULL) {
fp_f2 = fopen(file_f2, "w+");
if (fp_f2==NULL) verr("error on creating output file %s", file_f2);
}
if (file_pmin != NULL) {
fp_pmin = fopen(file_pmin, "w+");
if (fp_pmin==NULL) verr("error on creating output file %s", file_pmin);
}
if (file_f1plus != NULL) {
fp_f1plus = fopen(file_f1plus, "w+");
if (fp_f1plus==NULL) verr("error on creating output file %s", file_f1plus);
}
if (file_f1min != NULL) {
fp_f1min = fopen(file_f1min, "w+");
if (fp_f1min==NULL) verr("error on creating output file %s", file_f1min);
}
tracf = 1;
for (l = 0; l < Nfoc; l++) {
if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
else {
if (reci) f2 = fxs;
else f2 = fxf;
}
for (i = 0; i < n2; i++) {
hdrs_out[i].fldr = l+1;
hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
hdrs_out[i].selev = NINT(zsyn[l]*1000);
hdrs_out[i].sdepth = NINT(-zsyn[l]*1000);
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
}
ret = writeData(fp_out, (float *)&green[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
if (file_gmin != NULL) {
ret = writeData(fp_gmin, (float *)&Gmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gplus != NULL) {
ret = writeData(fp_gplus, (float *)&Gplus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f2 != NULL) {
ret = writeData(fp_f2, (float *)&f2p[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_pmin != NULL) {
ret = writeData(fp_pmin, (float *)&pmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1plus != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1plus[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1plus[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1plus[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1plus, (float *)&f1plus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1min != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1min[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1min[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1min[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1min, (float *)&f1min[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
}
ret = fclose(fp_out);
if (file_gplus != NULL) {ret += fclose(fp_gplus);}
if (file_gmin != NULL) {ret += fclose(fp_gmin);}
if (file_f2 != NULL) {ret += fclose(fp_f2);}
if (file_pmin != NULL) {ret += fclose(fp_pmin);}
if (file_f1plus != NULL) {ret += fclose(fp_f1plus);}
if (file_f1min != NULL) {ret += fclose(fp_f1min);}
if (ret < 0) verr("err %d on closing output file",ret);
if (verbose) {
t1 = wallclock_time();
vmess("and CPU-time write data = %.3f", t1-t2);
}
/*================ free memory ================*/
free(hdrs_out);
free(tapersy);
exit(0);
}
/*================ Convolution and Integration ================*/
void synthesis(complex *Refl, complex *Fop, float *Top, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nfoc, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int mode, int reci, int nshots, int *ixpossyn, int npossyn, double *tfft, int verbose)
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, iw, ix, k;
float *rtrace, idxs;
complex *sum, *ctrace;
int npe;
static double t0, t1, t;
size = nxs*nts;
nfreq = ntfft/2+1;
/* scale factor 1/N for backward FFT,
* scale dt for correlation/convolution along time,
* scale dx (or dxsrc) for integration over receiver (or shot) coordinates */
scl = 1.0*dt/((float)ntfft);
#ifdef _OPENMP
npe = omp_get_max_threads();
/* parallelisation is over number of virtual source positions (Nfoc) */
if (npe > Nfoc) {
vmess("Number of OpenMP threads set to %d (was %d)", Nfoc, npe);
omp_set_num_threads(Nfoc);
}
#endif
t0 = wallclock_time();
/* reset output data to zero */
memset(&iRN[0], 0, Nfoc*nxs*nts*sizeof(float));
ctrace = (complex *)calloc(ntfft,sizeof(complex));
if (!first) {
/* transform muted Ni (Top) to frequency domain, input for next iteration */
for (l = 0; l < Nfoc; l++) {
/* set Fop to zero, so new operator can be defined within ixpossyn points */
memset(&Fop[l*nxs*nw].r, 0, nxs*nw*2*sizeof(float));
for (i = 0; i < npossyn; i++) {
rc1fft(&Top[l*size+i*nts],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = mode*ctrace[nw_low+iw].i;
}
}
}
}
else { /* only for first call to synthesis */
/* transform G_d to frequency domain, over all nxs traces */
for (l = 0; l < Nfoc; l++) {
/* set Fop to zero, so new operator can be defined within all ix points */
memset(&Fop[l*nxs*nw].r, 0, nxs*nw*2*sizeof(float));
for (i = 0; i < nxs; i++) {
rc1fft(&Top[l*size+i*nts],ctrace,ntfft,-1);
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+i].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+i].i = mode*ctrace[nw_low+iw].i;
}
}
}
idxs = 1.0/dxs;
ixrcv = (int *)malloc(nshots*nx*sizeof(int));
for (k=0; k<nshots; k++) {
for (i = 0; i < nx; i++) {
ixrcv[k*nx+i] = NINT((xrcv[k*nx+i]-fxs)*idxs);
t1 = wallclock_time();
for (k=0; k<nshots; k++) {
/* if (verbose>=3) {
vmess("source position: %.2f ixpossyn=%d", xsrc[k], ixpossyn[k]);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
*/
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
/*================ SYNTHESIS ================*/
#pragma omp parallel default(none) \
shared(iRN, dx, npe, nw, verbose) \
shared(Refl, Nfoc, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
shared(nx, ixa, ixb, dxsrc, iox, inx, k, nfreq, nw_low, nw_high) \
shared(Fop, size, nts, ntfft, scl, ixrcv, stderr) \
private(l, ix, j, m, i, sum, rtrace)
{ /* start of parallel region */
sum = (complex *)malloc(nfreq*sizeof(complex));
rtrace = (float *)calloc(ntfft,sizeof(float));
#pragma omp for schedule(guided,1)
for (l = 0; l < Nfoc; l++) {
/* multiply R with Fop and sum over nx */
memset(&sum[0].r,0,nfreq*2*sizeof(float));
//for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (j = nw_low, m = 0; j <= nw_high; j++, m++) {
for (i = iox; i < inx; i++) {
sum[j].r += Refl[k*nw*nx+m*nx+i].r*Fop[l*nw*nxs+m*nxs+ixrcv[k*nx+i]].r -
Refl[k*nw*nx+m*nx+i].i*Fop[l*nw*nxs+m*nxs+ixrcv[k*nx+i]].i;
sum[j].i += Refl[k*nw*nx+m*nx+i].i*Fop[l*nw*nxs+m*nxs+ixrcv[k*nx+i]].r +
Refl[k*nw*nx+m*nx+i].r*Fop[l*nw*nxs+m*nxs+ixrcv[k*nx+i]].i;
/* transfrom result back to time domain */
cr1fft(sum, rtrace, ntfft, 1);
/* dx = receiver distance */
for (j = 0; j < nts; j++)
iRN[l*size+ix*nts+j] += rtrace[j]*scl*dx;
} /* end of parallel Nfoc loop */
free(rtrace);
#pragma omp single
{
#ifdef _OPENMP
npe = omp_get_num_threads();
#endif
}
} /* end of parallel region */
if (verbose>3) vmess("*** Shot gather %d processed ***", k);
} /* end of nshots (k) loop */
t = wallclock_time() - t0;
if (verbose) {
vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
}
return;
}
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nfoc, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose)
int iox, inx;
int i, l, ixsrc, ix, dosrc, k;
float x0, x1;
/*================ SYNTHESIS ================*/
for (l = 0; l < 1; l++) { /* assuming all synthesis operators cover the same lateral area */
// for (l = 0; l < Nfoc; l++) {
*npossyn=0;
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
if (ixa || ixb) {
if (reci == 0) {
x0 = xsyn[l]-ixb*dxsrc;
x1 = xsyn[l]+ixa*dxsrc;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) continue;
ix = NINT((xsrc[k]-x0)/dxsrc);
dosrc = 1;
}
else if (reci == 1) {
x0 = xsyn[l]-ixb*dxs;
x1 = xsyn[l]+ixa*dxs;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) dosrc = 0;
else dosrc = 1;
ix = NINT((xsrc[k]-x0)/dxs);
}
else if (reci == 2) {
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
x0 = xsyn[l]-ixb*dx;
x1 = xsyn[l]+ixa*dx;
if ((xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if ((xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
}
}
else {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
}
if (reci == 1 && dosrc) ix = NINT((xsrc[k]-x0)/dxs);
if (reci < 2 && dosrc) {
ixpossyn[*npossyn]=ixsrc;
*npossyn += 1;
}
if (verbose>=3) {
vmess("ixpossyn[%d] = %d ixsrc=%d ix=%d", *npossyn-1, ixpossyn[*npossyn-1], ixsrc, ix);
}
if (reci == 1 || reci == 2) {
for (i = iox; i < inx; i++) {
if ((xrcv[k*nx+i] < x0) || (xrcv[k*nx+i] > x1)) continue;
if (reci == 1) ix = NINT((xrcv[k*nx+i]-x0)/dxs);
else ix = NINT((xrcv[k*nx+i]-x0)/dx);
ixpossyn[*npossyn]=ix;
*npossyn += 1;
}
}
} /* end of Nfoc loop */
} /* end of nshots (k) loop */
return;
}
/*
void update(float *field, float *term, int Nfoc, int nx, int nt, int reverse, int ixpossyn)
{
int i, j, l, ix;
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
}
else {
for (l = 0; l < Nfoc; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
}
return;